Scientists have turned cooking oil into a material 200 times stronger than steel!

on . Posted in Articles of Interest

CANBERRA, Australia (PNN) - February 1, 2017 - Researchers have found a way to turn cheap, everyday cooking oil into the wonder material graphene - a technique that could greatly reduce the cost of making the much-touted nanomaterial.

Graphene is a single sheet of carbon atoms with incredible properties - it's 200 times stronger than steel, harder than diamond, and incredibly flexible. Under certain conditions, it can even be turned into a superconductor that carries electricity with zero resistance.

That means the material has the potential to make better electronics, more effective solar cells, and could even be used in medicine.

Last year, a study suggested that graphene could help mobile phone batteries last 25% longer, and the material has the potential to filter fuel out of thin air.

But these applications have been limited by the fact that graphene usually has to be made in a vacuum at intense heat using purified ingredients, which makes it expensive to produce.

Until we can find a cost-effective way to mass-produce the over-achieving material, it's pretty much limited to labs.

But scientists in Australia have now managed to create graphene in normal air conditions, using cheap soybean cooking oil.

"This ambient-air process for graphene fabrication is fast, simple, safe, potentially scalable, and integration-friendly," said one of the researchers, Zhao Jun Han, from Australia's CSIRO. "Our unique technology is expected to reduce the cost of graphene production and improve the uptake in new applications."

The team has called the new technique “GraphAir” technology, and it involves heating soybean oil in a tube furnace for about 30 minutes, causing it to decompose into carbon building blocks.

This carbon is then rapidly cooled on a foil made of nickel, where it diffuses into a thin rectangle of graphene that's just 1 nanometer thick (about 80,000 times thinner than a human hair).

Not only is this technique cheaper and easier than other methods, it's also a lot quicker - to create graphene in a vacuum takes several hours.

Zhao said that the technique could reduce the cost of making graphene tenfold.

Not only that, but it offers a more sustainable option for recycling waste cooking oil.

"We can now recycle waste oils that would have otherwise been discarded and transform them into something useful," said one of the team, Dong Han Seo.

The question now is whether this new technique can be scaled up - finding a cheaper way to make graphene is awesome, but the graphene film produced so far was only 5 cm (1.9 inches) by 2 cm (0.8 inches) in size.

The team says that the largest film they can make using the technique right now is around the size of a credit card.

To really make graphene fit for commercial use, researchers will need to produce films that are a whole lot larger than that.

"The potential is enormous," said David Officer, a graphene expert from the University of Wollongong in Australia, who wasn't involved in the study. "[But] the question will be whether you can economically scale a method like this, where they've sealed it inside a furnace tube, to create and handle meter-sized films."

The team is now looking for commercial partners to pursue this goal.

But they're not the only researchers working on it - last week, a team from Kansas State University patented a simple technique that creates graphene using only hydrocarbon gas, oxygen, and a spark plug. No vacuum required.

Time will tell if they can use it to effectively make large films of graphene in one go, but it's nice to know that researchers around the world are working on finding a way to take this incredible material out of the lab and into our lives.

The research has been published in Nature Communications.

Eulogies

Eulogy for an Angel
1992-Dec. 20, 2005

Freedom
2003-2018

Freedom sm

My Father
1918-2010

brents dad

Dr. Stan Dale
1929-2007

stan dale

MICHAEL BADNARIK
1954-2022

L Neil Smith

A. Solzhenitsyn
1918-2008

solzhenitsyn

Patrick McGoohan
1928-2009

mcgoohan

Joseph A. Stack
1956-2010

Bill Walsh
1931-2007

Walter Cronkite
1916-2009

Eustace Mullins
1923-2010

Paul Harvey
1918-2009

Don Harkins
1963-2009

Joan Veon
1949-2010

David Nolan
1943-2010

Derry Brownfield
1932-2011

Leroy Schweitzer
1938-2011

Vaclav Havel
1936-2011

Andrew Breitbart
1969-2012

Dick Clark
1929-2012

Bob Chapman
1935-2012

Ray Bradbury
1920-2012

Tommy Cryer
1949-2012

Andy Griffith
1926-2012

Phyllis Diller
1917-2012

Larry Dever
1926-2012

Brian J. Chapman
1975-2012

Annette Funnicello
1942-2012

Margaret Thatcher
1925-2012

Richie Havens
1941-2013

Jack McLamb
1944-2014

James Traficant
1941-2014

jim traficant

Dr. Stan Monteith
1929-2014

stan montieth

Leonard Nimoy
1931-2015

Leonard Nimoy

Stan Solomon
1944-2015

Stan Solomon

B. B. King
1926-2015

BB King

Irwin Schiff
1928-2015

Irwin Schiff

DAVID BOWIE
1947-2016

David Bowie

Muhammad Ali
1942-2016

Muhammed Ali

GENE WILDER
1933-2016

gene wilder

phyllis schlafly
1924-2016

phylis schafly

John Glenn
1921-2016

John Glenn

Charles Weisman
1954-2016

Charles Weisman

Carrie Fisher
1956-2016

Carrie Fisher

Debbie Reynolds
1932-2016

Debbie Reynolds

Roger Moore
1917-2017

Roger Moore

Adam West
1928-2017

Adam West

JERRY LEWIS
1926-2017

jerry lewis

HUGH HEFNER
1926-2017

Hugh Hefner

PROF. STEPHEN HAWKING
1942-2018

Hugh Hefner 

ART BELL
1945-2018

Art Bell

DWIGHT CLARK
1947-2018

dwight clark

CARL MILLER
1952-2017

Carl Miller

HARLAN ELLISON
1934-2018

Harlan Ellison

STAN LEE
1922-2018

stan lee

CARL REINER
1922-2020

Carl Reiner

SEAN CONNERY
1930-2020

dwight clark

L. NEIL SMITH
1946-2021

L Neil Smith

JOHN STADTMILLER
1946-2021

L Neil Smith