New device combines the advantages of batteries and supercapacitors!

on . Posted in Articles of Interest

LOS ANGELES, Kalifornia (PNN) - April 19, 2015 - Scientists at UCLA's Kalifornia NanoSystems Institute have developed a new device that combines the high energy densities of batteries and the quick charge and discharge rates of supercapacitors. The hybrid supercapacitor is reportedly six times as energy-dense as a commercially available supercapacitor and packs nearly as much energy per unit volume as a lead-acid battery.

Batteries can store a lot of energy in a small and light package, but they can’t charge or discharge very quickly or last a long time the way supercapacitors can. A single device that combines all of these positive attributes could change the entire technological landscape of today, leading to lighter, compact phones, and electric cars that charge in seconds instead of hours.

Professor Richard Kaner and Dr. Maher El-Kady have made an important step in this direction by creating a high-performance hybrid supercapacitor. Like other supercapacitors, their device charges and discharges very quickly and lasts more than 10,000 recharge cycles. But according to the scientists, their invention also stores six times more energy than a conventional supercapacitor, holding more than twice as much charge as a typical thin-film lithium battery in one fifth the thickness of a sheet of paper.

The amount of energy that can be stored in such a device depends in large part on the contact area between the electrolyte and the two electrodes: the greater the contact area, the more energy can be stored. Previous hybrid supercapacitors used porous structures in the electrode to maximize this area, but the pores were simply too big, and therefore too few, bearing relatively little effect on performance.

Kaner and El-Kady used manganese dioxide (a material used for alkaline batteries) for the electrodes, but also added a special three-dimensional laser-scribed graphene (LSG) structure. Crucially, this graphene structure was specifically designed for high conductivity, porosity and surface area, allowing the device to pack much more energy per unit volume and mass.

"Even though our electrodes are thin (around 15 microns), they are capable of storing more charge than the 100–200 micronmeter thick commercial supercapacitor electrodes mainly because our hybrid LSG/MnO2 electrodes are very energy dense," said El-Kady.

According to the researchers, the supercapacitors can reach energy densities of up to 42 Wh/l, compared with 7 Wh/l for state of the art commercial carbon-based supercapacitors. Their device also provides power densities up to around 10 kW/l, which is 100 times more than lead acid batteries and on the higher end of performance for commercial supercapacitors.

"The LSG–manganese-dioxide capacitors can store as much electrical charge as a lead acid battery, yet can be recharged in seconds, and they store about six times the capacity of state-of-the-art commercially available supercapacitors," said Kaner.

Supercapacitors are usually stacked on top of each other and packaged into a single unit, but the researchers have been able to take advantage of the thinness of their device by integrating it inside a solar cell array. In this application, it was found that the supercapacitor could quickly store electrical charge generated by a solar cell during the day, hold the charge until evening, and then power an LED overnight.

This is just one of many potential uses for the technology.

"Let’s say you wanted to put a small amount of electrical current into an adhesive bandage for drug release or healing assistance technology," Kaner said. "The microsupercapacitor is so thin you could put it inside the bandage to supply the current. You could also recharge it quickly and use it for a very long time."

Kaner tells us his team is now exploring using these electrodes to build hybrid supercapacitors on a large scale.

The research is described in the journal Proceedings of the National Academy of Sciences.

Eulogies

Eulogy for an Angel
1992-Dec. 20, 2005

Freedom
2003-2018

Freedom sm

My Father
1918-2010

brents dad

Dr. Stan Dale
1929-2007

stan dale

MICHAEL BADNARIK
1954-2022

L Neil Smith

A. Solzhenitsyn
1918-2008

solzhenitsyn

Patrick McGoohan
1928-2009

mcgoohan

Joseph A. Stack
1956-2010

Bill Walsh
1931-2007

Walter Cronkite
1916-2009

Eustace Mullins
1923-2010

Paul Harvey
1918-2009

Don Harkins
1963-2009

Joan Veon
1949-2010

David Nolan
1943-2010

Derry Brownfield
1932-2011

Leroy Schweitzer
1938-2011

Vaclav Havel
1936-2011

Andrew Breitbart
1969-2012

Dick Clark
1929-2012

Bob Chapman
1935-2012

Ray Bradbury
1920-2012

Tommy Cryer
1949-2012

Andy Griffith
1926-2012

Phyllis Diller
1917-2012

Larry Dever
1926-2012

Brian J. Chapman
1975-2012

Annette Funnicello
1942-2012

Margaret Thatcher
1925-2012

Richie Havens
1941-2013

Jack McLamb
1944-2014

James Traficant
1941-2014

jim traficant

Dr. Stan Monteith
1929-2014

stan montieth

Leonard Nimoy
1931-2015

Leonard Nimoy

Stan Solomon
1944-2015

Stan Solomon

B. B. King
1926-2015

BB King

Irwin Schiff
1928-2015

Irwin Schiff

DAVID BOWIE
1947-2016

David Bowie

Muhammad Ali
1942-2016

Muhammed Ali

GENE WILDER
1933-2016

gene wilder

phyllis schlafly
1924-2016

phylis schafly

John Glenn
1921-2016

John Glenn

Charles Weisman
1954-2016

Charles Weisman

Carrie Fisher
1956-2016

Carrie Fisher

Debbie Reynolds
1932-2016

Debbie Reynolds

Roger Moore
1917-2017

Roger Moore

Adam West
1928-2017

Adam West

JERRY LEWIS
1926-2017

jerry lewis

HUGH HEFNER
1926-2017

Hugh Hefner

PROF. STEPHEN HAWKING
1942-2018

Hugh Hefner 

ART BELL
1945-2018

Art Bell

DWIGHT CLARK
1947-2018

dwight clark

CARL MILLER
1952-2017

Carl Miller

HARLAN ELLISON
1934-2018

Harlan Ellison

STAN LEE
1922-2018

stan lee

CARL REINER
1922-2020

Carl Reiner

SEAN CONNERY
1930-2020

dwight clark

L. NEIL SMITH
1946-2021

L Neil Smith

JOHN STADTMILLER
1946-2021

L Neil Smith