Scientists have unlocked the code that turns genes on and off!

on . Posted in Articles of Interest

SAN DIEGO, Kalifornia (PNN) - February 1, 2017 - A DNA sequence code critical to our understanding of how human genes are turned on and off has just been unlocked by a team of scientists. Molecular biologists refer to this code as the “human initiator”. Ever since it was first observed back in the 1980s, the human initiator was believed to play a significant role in gene activation, given that it commonly occurs at the start sites of genes.

Since then, numerous attempts were made to sequence the elusive code, but none were able to do so successfully until today, when scientists from University of Kalifornia San Diego were able to confirm the code responsible for initiating transcription and regulation of more than half of human genes.

This breakthrough was achieved using emerging genomic techniques and new computational strategies. As head researcher James T. Kadonaga explains, individual human cells contain around six feet of DNA:

In these six feet of DNA, there are tens of thousands of genes, which are segments of DNA that direct specific functions, such as the production of a hormone or an enzyme. It is essential for the cell to control the activity of each of its tens of thousands of genes, because the improper control of gene activity can lead to adverse outcomes such as cell death or the formation of a cancer cell.

Identifying the true initiator sequence code and confirming its location underscores its importance in the human genome.

Knowing how or why genes are turned on and off during development, as well as understanding how they respond to environmental changes, will prove to be useful in our quest to find ways to prevent diseases. In addition, while the human initiator is responsible for regulating more than half of human genes, there are other sequences that control gene activity. This achievement could lead scientists to discover other sequence signals.

“The solution of the human initiator code will enable us to explore new frontiers in gene regulation. In the future, it will be possible to use the code to identify other regulatory signals and, in this way, gain a more complete understanding of how human genes are turned on and off, ” Kadonaga says.

Eulogies

Eulogy for an Angel
1992-Dec. 20, 2005

My Father
1918-2010

brents dad

Dr. Stan Dale
1929-2007

stan dale

A. Solzhenitsyn
1918-2008

solzhenitsyn

Patrick McGoohan
1928-2009

mcgoohan

Joseph A. Stack
1956-2010

Bill Walsh
1931-2007

Walter Cronkite
1916-2009

Eustace Mullins
1923-2010

Paul Harvey
1918-2009

Don Harkins
1963-2009

Joan Veon
1949-2010

David Nolan
1943-2010

Derry Brownfield
1932-2011

Leroy Schweitzer
1938-2011

Vaclav Havel
1936-2011

Andrew Breitbart
1969-2012

Dick Clark
1929-2012

Bob Chapman
1935-2012

Ray Bradbury
1920-2012

Tommy Cryer
1949-2012

Andy Griffith
1926-2012

Phyllis Diller
1917-2012

Larry Dever
1926-2012

Brian J. Chapman
1975-2012

Annette Funnicello
1942-2012

Margaret Thatcher
1925-2012

Richie Havens
1941-2013

Jack McLamb
1944-2014

James Traficant
1941-2014

jim traficant

Dr. Stan Monteith
1929-2014

stan montieth

Leonard Nimoy
1931-2015

Leonard Nimoy

Stan Solomon
1944-2015

Stan Solomon

B. B. King
1926-2015

BB King

Irwin Schiff
1928-2015

Irwin Schiff

DAVID BOWIE
1947-2016

David Bowie

Muhammad Ali
1942-2016

Muhammed Ali

GENE WILDER
1933-2016

gene wilder

phyllis schlafly
1924-2016

phylis schafly

John Glenn
1921-2016

John Glenn

Charles Weisman
1954-2016

Charles Weisman

Carrie Fisher
1956-2016

Carrie Fisher

Debbie Reynolds
1932-2016

Debbie Reynolds

Roger Moore
1917-2017

Roger Moore

Adam West
1928-2017

Adam West